439 research outputs found

    Quarkonium production via recombination

    Full text link
    The contrast between model predictions for the transverse momentum spectra of J/Psi observed in Au-Au collisions at RHIC is extended to include effects of nuclear absorption. We find that the difference between initial production and recombination is enhanced in the most central collisions. Models utilizing a combination of these sources may eventually be able to place constraints on their relative magnitudes.Comment: Based on invited plenary talk at the 2nd International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions, Asilomar, CA, June 9-16, 2006, to be published in Nucl. Phys.

    Method of constructing exactly solvable chaos

    Full text link
    We present a new systematic method of constructing rational mappings as ergordic transformations with nonuniform invariant measures on the unit interval [0,1]. As a result, we obtain a two-parameter family of rational mappings that have a special property in that their invariant measures can be explicitly written in terms of algebraic functions of parameters and a dynamical variable. Furthermore, it is shown here that this family is the most generalized class of rational mappings possessing the property of exactly solvable chaos on the unit interval, including the Ulam=Neumann map y=4x(1-x). Based on the present method, we can produce a series of rational mappings resembling the asymmetric shape of the experimentally obtained first return maps of the Beloussof-Zhabotinski chemical reaction, and we can match some rational functions with other experimentally obtained first return maps in a systematic manner.Comment: 12 pages, 2 figures, REVTEX. Title was changed. Generalized Chebyshev maps including the precise form of two-parameter generalized cubic maps were added. Accepted for publication in Phys. Rev. E(1997

    Integration and Conventional Systems at STAR

    Full text link
    At the beginning of the design and construction of the STAR Detector, the collaboration assigned a team of physicists and engineers the responsibility of coordinating the construction of the detector. This group managed the general space assignments for each sub-system and coordinated the assembly and planning for the detector. Furthermore, as this group was the only STAR group with the responsibility of looking at the system as a whole, the collaboration assigned it several tasks that spanned the different sub-detectors. These items included grounding, rack layout, cable distribution, electrical, power and water, and safety systems. This paper describes these systems and their performance.Comment: 17 pages, 6 figures, Contribution to a NIM Volume Dedicated to the Detectors and the Accelerator at RHI

    Geometry of fully coordinated, two-dimensional percolation

    Full text link
    We study the geometry of the critical clusters in fully coordinated percolation on the square lattice. By Monte Carlo simulations (static exponents) and normal mode analysis (dynamic exponents), we find that this problem is in the same universality class with ordinary percolation statically but not so dynamically. We show that there are large differences in the number and distribution of the interior sites between the two problems which may account for the different dynamic nature.Comment: ReVTeX, 5 pages, 6 figure

    Entropy and the variational principle for actions of sofic groups

    Full text link
    Recently Lewis Bowen introduced a notion of entropy for measure-preserving actions of a countable sofic group on a standard probability space admitting a generating partition with finite entropy. By applying an operator algebra perspective we develop a more general approach to sofic entropy which produces both measure and topological dynamical invariants, and we establish the variational principle in this context. In the case of residually finite groups we use the variational principle to compute the topological entropy of principal algebraic actions whose defining group ring element is invertible in the full group C*-algebra.Comment: 44 pages; minor changes; to appear in Invent. Mat

    Topological entropy and secondary folding

    Full text link
    A convenient measure of a map or flow's chaotic action is the topological entropy. In many cases, the entropy has a homological origin: it is forced by the topology of the space. For example, in simple toral maps, the topological entropy is exactly equal to the growth induced by the map on the fundamental group of the torus. However, in many situations the numerically-computed topological entropy is greater than the bound implied by this action. We associate this gap between the bound and the true entropy with 'secondary folding': material lines undergo folding which is not homologically forced. We examine this phenomenon both for physical rod-stirring devices and toral linked twist maps, and show rigorously that for the latter secondary folds occur.Comment: 13 pages, 8 figures. pdfLaTeX with RevTeX4 macro

    A Topological Study of Chaotic Iterations. Application to Hash Functions

    No full text
    International audienceChaotic iterations, a tool formerly used in distributed computing, has recently revealed various interesting properties of disorder leading to its use in the computer science security field. In this paper, a comprehensive study of its topological behavior is proposed. It is stated that, in addition to being chaotic as defined in the Devaney's formulation, this tool possesses the property of topological mixing. Additionally, its level of sensibility, expansivity, and topological entropy are evaluated. All of these properties lead to a complete unpredictable behavior for the chaotic iterations. As it only manipulates binary digits or integers, we show that it is possible to use it to produce truly chaotic computer programs. As an application example, a truly chaotic hash function is proposed in two versions. In the second version, an artificial neural network is used, which can be stated as chaotic according to Devaney

    Slowly synchronizing automata and digraphs

    Full text link
    We present several infinite series of synchronizing automata for which the minimum length of reset words is close to the square of the number of states. These automata are closely related to primitive digraphs with large exponent.Comment: 13 pages, 5 figure

    Gauge symmetry and the EMC spin effect

    Full text link
    We emphasise the EMC spin effect as a problem of symmetry and discuss the renormalisation of the C=+1C=+1 axial tensor operators. This involves the generalisation of the Adler-Bell-Jackiw anomaly to each of these operators. We find that the contribution of the axial anomaly to the spin dependent structure function g1(x,Q2)g_1 (x, Q^2) scales at O(αs)O(\alpha_s). This means that the anomaly can be a large xx effect in g1g_1. Finally we discuss the jet signature of the anomaly.Comment: 17 pages, Latex, Cavendish preprint HEP 93/

    Parity Doubling Among the Baryons

    Full text link
    We study the evidence for and possible origins of parity doubling among the baryons. First we explore the experimental evidence, finding a significant signal for parity doubling in the non-strange baryons, but little evidence among strange baryons. Next we discuss potential explanations for this phenomenon. Possibilities include suppression of the violation of the flavor singlet axial symmetry (U(1)AU(1)_{A}) of QCD, which is broken by the triangle anomaly and by quark masses. A conventional Wigner-Weyl realization of the SU(2)L×SU(2)RSU(2)_{L}\times SU(2)_{R} chiral symmetry would also result in parity doubling. However this requires the suppression of families of \emph{chirally invariant} operators by some other dynamical mechanism. In this scenario the parity doubled states should decouple from pions. We discuss other explanations including connections to chiral invariant short distance physics motivated by large NcN_{c} arguments as suggested by Shifman and others, and intrinsic deformation of relatively rigid highly excited hadrons, leading to parity doubling on the leading Regge trajectory. Finally we review the spectroscopic consequences of chiral symmetry using a formalism introduced by Weinberg, and use it to describe two baryons of opposite parity.Comment: 32 pages, 8 figures; v2 revised and expanded; submitted to Phys. Re
    corecore